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NOTE ON SHOCK REFECTION COEMCIMIT

A ABSTRACT

The shock reflection coefficient, Rw, is defined here as the ratio

of pressure drop across a reflected disturbance from a shock wave to that

across the incident disturbance wave (which is generated downstream of

the shock). The treatment of shock reflection coefficients in the work

of previous investigators is reviewed briefly. A derivation is given of

a general expression for Rw in terms of shock curvature for nonequili-

brium axisynmetric flow. Sample computations show the effects of non-

equilibrium flow and three-dimensionality on the behavior of w It is

shown that Aw can become infinite in these situations, although for two-

dimensional ideal gas flow its magaitude is always finite and usually

very small.
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LIST OF SXMBOLS11 f Nonequilibrium production term, Eq. (4)

K Shock wave curvature

1 M Local Mach number

n Arc length on curve normal to streamlines

p Pressure

q Flow speed

Shock reflection coefficient

s Arc length on streamline

T Temperature

x Coordinate in direction of free stream

y Coordinate normal to free stream

I ~Shock Wave angle

y' Ratio of specific heats

€ = 0 for two-dimensional flow; = 1 for axisymmetric flow.

I • Arc length on left running Mach line

0 Direction of velocity vector

"V Mach angle, = arc sin (1/M)

• Arc length on right running Mach line

p Density

Subscripts:

w Free stream value

v Value at shock wave



INT!RODUCTDION

The shock reflection coefficient, designated here by Rw, is a

quantity of interest in the study of interaction of shock and Mach waves,

particularly in connection with application of the shock-expansion method 1 '7

to computing supersonic flows. Essentially it provides a measure of the 4
strength of a reflected disturbance from a shock wave relative to the

strength of the incident disturbance wave (which is generated downstream

of the shock). j

Lighthill , Chu 2, and Chernyi3 have obtained the reflection

coefficient for two-dimensional ideal gas flow. (See page 180 of

Reference 3 for a brief discussion of errors in References 1 and 2.) 1
Graphs of computations found in References 3 and 4 show that the magni- j
tude of Rw is small except near the region of shock detachment, and

that JRwj<l for finite Mach numnber. Note, however, that R= - 1 for a

straight shock and finite flow deflection, according to the definition I
in Equation (1). Eggers and Syvertson consider a closely related

quantity called "disturbance strength ratio." Their calculation ford a

case of air in vibrational equilibrium ( -0 = 10, T. = 2780 K-) indicates

that caloric imperfections in the gas still leave the disturbance

strength ratio small compared to unity if y does not decrease appreciably1
below 1.-3.

We now wish to investigate nonequilibrium effects on the shock

reflection coefficient; here the shock curvature appears explicitly. In
ees

addition, we wish to examine the effect of three-dimensionality, after

extending the definition of Rw to axisym]etric flow.

EQUATIONS

Refer to Figure 1; the shock reflection coefficient is defined as A,

follows (as on page 232 of Reference 6):

= P -r PC B lim A*ý
_ _ _ _ttQ4j-0 pB - -A AgA Tdp dg--)b

SSuperscript nwnbers denote references which may be found on page 15.
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Here the positive • and T directions-make angles of p(< 900) with the

positive streamline direction. Applying the law of sines to A ABC, we

get ;4

R sin (2)
(UP&9j sin-pX

By means of the dtrectional derivative relations

dp/d = (dp/ds) cos p + (dp/dn) sin P&

dp/dg = (dp/ds) cosp - (dp/dn) sin pi

and the following relation valid at the shock wave:

(d/dn) (csc W),w [r d/dl - (cos X) d/ds]w

the shock reflection coefficient is expressed as

&,: i (- (sin K - s. si•px)

dow ds

and dp/ds is given by *

D &= (Kw csc X) ydcot X+ Pq de ) q sine+pqf (e )

where D = 1 - + cot•, and f is the nonequilibrium "production term" !

(f = 0 for frozen or equilibrium flow); e= 0 or 1 for two-dimensional or

axisyimmtric flow, respectively.

CALCULATIONS

We consider dissociating air, using the model presented in Reference

7, as an example of nonequilibrium effects on Rw; for this flow the air

is in vibrational equilibrium at the shock. A typical set of results is

sho, n in Figure 2 for a wide range of shock curvature. It is seen that

for each value of K. there is a critical deflection angle producing '14

infinite Rw; this results from the vanishing of dp/d4 in Equation (2).

This formula is found in section ,5 of Reference 7, where a typographical
error occurs; the multiplication sign should be replaced by a plus sign. - • I
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For deflections smaller than this critical value the behavior of Rw is

similar to that for ideal gas flow except for the sharp rise at the

asymptote; beyond the asymptote Rw approaches - 1 at the detachment angle.

When e is taken equal to 1 in Equation (4), the definition of shock

reflection coefficient [(Equation (1)] can be applied to axisymmetric

flow. Figure 3 shows some typical results in ideal gas for several

values of the parameter yrw. (Generally for flows over smooth ogival

bodies of revolution, -0.1 < yK~w • O.) The behavior of Rw here differs

considerably from that for two-dimensional flow. There is a critical

deflection angle for each yK. and a limiting Rw value of - 1 as

detachment angle is approached. Formally, yKw = - c corresponds to two-

dimensional flow, and the figure shows the approach of the curves with

decreasing yKw to the two-dimensional one.
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